3.1 Slopes of Curves; Derivatives

rise

The slope of alineisameasure of its slope = —=

“stegpness’: for any two points on the
ling, it isthe ratio of the “rise”
(differencein the y - coordinates) to
the “run” (differenceinthe

X - coordinates), i.e. lope= Dy /Dx.

rise Dy: Yo - Y1

Steep lines have large slopes (large Dy relative
to Dx), flatter lines have smaller slopes.
Decreasing lines (which go “downhill” as x
increases towards the right) have negative slopes
(Dx and Dy with opposite signs). The slope of a
line doesn’t depend on the pair of points on the
line used to calculateit; all pairs of points on the
same line will give the same slope.

negative

smaller
slope

For curvesthat aren't lines, the idea of asingle overall slopeisnot very useful.
Intuitively, the steepness of atypical curveisdifferent at different places on
the curve, so an appropriate definition of slope for the curve should somehow
reflect this variable steepness.



Let’slook at how we could define the slope of
aparticular curve, say y = x°, near atypical
point on the curve, say (11) .

Use your grapher to plot the curve and the

point, and investigate by zooming in closely on ,{1 1
the point. Notice what happens as you zoom:
as you get closer to the point, the visible part of
the curve gets progressively straighter, and
eventually becomes indistinguishable from a
straight line. Looked at “up close’, the part of
the curve y = x° near (11) isapproximately a
straight line, so it makes sense to think of the (2,2)
slopeof y = x° near (1) asthe slope of this
approximate line. Read off from your zoomed
graph the coordinates of another point on the
curve and use it with the point (11) to calculate
aslope. You should get a number very closeto
2 —in fact, the closer in you zoom, the nearer this calculated slope should be
to 2.

(1.1)

[] Find the approximate slope of y = x* near (2,4 by zooming.

Now let’s do this same process algebraically, for the graph of agenera
function y = f(x) at ageneral point (a, f(a)) onit. Supposewe zoom in on
(a, f(a)) until we're satisfied that the visible part of the curveis nearly aline.



y = f(x) We can calculate the slope of this approximate
line from the given point (g, f(a)) and a
nearby point on the curve, say with x =a+h
for some small value h and y = f(a+ h):

(a. f (@) Dy _f(a+h)- f(a) _ fa+h)- f(a)
Dx (a+h-a h '

Now suppose we zoom in closer and closer to
(a, f(a)).Thevisible part of the curve gets
closer and closer to a straight line as we do so.
At each step, to calculate the dope of this
"Improved" line, we need to take a new nearby
point (a+h, f(a+h)) even closer to (a, f(a))

h than before, i.e. we have to take h smaller and
(a (@) smaller. In effect, we are performing a

limiting process here: we are looking at the

valueas h® 0 of our above expression for the ope near (a, f(a)). It thus
makes sense to define the slope of the curve at (a, f(a)) to bethe limit of this
expression.

(a+h, f(a+h))

Definition. Thesope of a curve y = f(x) at the point (g, f(a))
on it is defined to be the number

i f@th)- f@)

h® 0 h

if thislimit exists.




Example. Let’susethislimit to check our earlier experimental result that
the slope of the curve y = x? at the point (1) is2. Herea=1and f(x)= x?,
SO we have

_ 2_ 2
Imf(a+h) f(a):”m(1+h) 1
h® 0 h h® 0 h

. 2h+h°
=lim
h® 0 h

= 1im(2 +h)

h® 0

=2

as expected. m

Example. Wefind the slope of the curve y =+/x at the point (4,2. Here
a=4 and f(x)=+/x, sothedopeis

fa+h)- f(a) _ w/T+

lim lim
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Check this answer by zooming in on the graph of y=+/x near (4,2.®



[1 Find the lope of the curve y =4 at (2, %) and check your answer by

zooming in on the graph.

The special limit used to find slopes of curves occurs in many other contexts,
and so has a hame and a notation.

Definition. For any function y = f(x), the number

fqa) = lim@*) - ()

h® 0 h

If it exists, is called the derivative of the function f at the value
X =a.

Example. Let’ s use the definition to calculate the derivative of
f(x)=(x+3)°a x =0.
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[J Usethe definition to find the derivative of f(x)=~/x(x- 2) at x =2.
[] Find the derivative of sinx at x =0 and the derivative of cosx at x =p.

[ Identify "by inspection" afunction f and a number a such that

2+h) 5.2
fqa) = lim@te - 26
h® 0 h

Problem. Calculatethe derivativeof f(x)=—= at x =2 fromthe

definition.
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[]  Usethe definition to calculate the derivative of f(x) = ‘,ﬁ at x =3.

[1 To calculate derivatives of more complicated functions, you can often use
your CAS to do the necessary work. Use your CAS to find the derivative of

at x =4 from the definition.



3.2 Tangent Lines and Linear
Approximations

Intuitively, aline istangent to acurve at

some point on it if the line “touches’ the (a, f(a))

curve at that point. We can think of the

tangent line as the limiting position of a

line through the point and another nearby

point on the curve as the second point \
approaches the first. (x, £(x)) \

Let’s use thisideato find the slope of the tangent line and then its equation.
Suppose we are given apoint (a, f(a)) onthecurve y = f(x). If (x, f(x)) isa
nearby point on the curve, then the lope of the line joining the two pointsis

D _f(x)- (&)
Dx X-a

The slope of thetangent line at (a, f(a)) isthe limit of this expression as
(x, f(X)) approaches (a, f(a)) along the curve, i.e. as x approaches a:

im+X)- T(a)
x® a X-a

If weset h=x- a, thenthestatement“ x® a” isequivalentto“h® 0", so
we can write the limit as

im-@*h)- (@)

h® 0 h



i.e. we have f {a).

The slope of the line tangent to the graph of y = f(x) at the point
(g f(a)) onitis f §a).

Example. Tofind the equation of the line tangent to y = x® at the point (2,8)
onit, weset f(x)= xand calculate the necessary slope f §2):

f2+h)- (2)

f42) =lim "
3 3
_jim&Hh) - 2
h® 0 h
_”m(8+12h+6h2+h3)- 8
" h®o h
=lim(12+ 6h+ h?)
h® 0
=12

To find the tangent line, equate this slope to the slope from the points (2,8)
and (x,y) and solve for y:

0o

y-o =12,

X-2
y- 8=12(x- 2)
=12x- 24,
y=12x-16. m



Example. Thenormal lineto acurve at apoint on it isthe line perpendicular
to the curve at that point, i.e. perpendicular to its tangent line at that point.
(Remember that two lines are perpendicular if their slopes are negative
reciprocals of each other.)

To find the normal line to the curve y =1A/x at (11) , we first find the slope of
the tangent lineat (1) . For f(x)=/x,

fqa) = lim &0 10
h® 0 h
~ ) m]/‘/1+h - 141
= het h
1y 1 i
=lim= -1
hlc@ngh{\/hh
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Thisisthe dope of the tangent line through
(1)) , so the slope of the normal line through
() is-2. Theequation of the normal line
isthen
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which simplifiesto y=-2x+3. &

[] Find equations for the tangent line and normal line to the parabola
y=x"+4x at theorigin.

[] Find the derivative of f(x)=¢€*at x =0. (Hint: how was the number e
defined?)

At any point of on the graph of afunction, the tangent line has the derivative
of the function at that point as slope, i.e. the tangent line has the same slope as
the curve at that point. This means that when we zoom in on the point, the
line that the curve “straightens out” into isin fact this same tangent line.

Since the curve then gets closer and closer to its tangent line the closer we
zoom in on the point of tangency, we can use the tangent line to approximate
the curve near that point.

The line tangent to the curve
y=f(x) a (a, f(a)) hasslope
f §a), and so has equation

(x, f(a) + fRa)(x- a))

y- f(a) _
X-a f€a),

or equivalently,

y=f(@)+fqa)(x- a).

Near x =a, the y-coordinate for the curve is approximately the y-coordinate
for the line.



Definition. The linear approximation near x =a for the

function y = f(x) is
f(x)» f(a)+ f&a)(x- a).

Example. Wefind the linear approximation for the parabola y = x* - 5x+ 3
for values of x near 1. For a=1and f(x) = x* - 5x +3 the approximation is
f(x)» f(1)+ f¢) x-1). Wehave f() =-1andweneedtofind fq) :

{ah- g+ 3- {4
h
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|
lim(h- 3) =-3
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Thennear x =1, f(X)» - 1+(-3(x-1),i.e, X - 5x+3» -3x+2. ®

[1 Usealinear approximation near x =0 to show that sinx » x for small
values of x. About how small must x be to ensure accuracy to 2 decimal
places? (Experiment by tabulating some values of x vs. sinx.)

Example. We use alinear approximation to estimate +/83. The function in
this caseis f (x) =+/x, and the nearest value to 83 of an easy-to-find square is
a=81. Theapproximationis f(83) » f(81)+ f ¢81)(3- 1), so we need



J81+h- /81

h
:”m\/81+h- 9, J/81+h+9
h® 0 h \/81+h+9
—lim (81+h)- 81
h®oh/81l+h+9
. 1
=lim
he®o./81+h+9

Then+/83 » +/81+ %5(83- 81) = 9%» 9.1111 (correct to 4 decimal places).
The actual value of +/83 is 9.1104 (to 4 decimal places). =

[1 Usealinear approximation to estimate >3 .

In economics, derivatives of quantities such as cost, revenue, etc. which are
functions of the number of units produced are called marginal quantities. For
example, if C(x) isthe cost of producing x units of some commodity, then
C¢a) isthemarginal cost of producing a units. For values of x closeto a,
linear approximation of C(x) gives

C(x) » C(a)+Cqa)(x- a).

Since only whole numbers of units can be produced, x and a must be positive
integers. If x=a+1, wehave C(a+1) » C(a)+C¢a)” 1,i.e.

C¢a) »C(a+1)- C(a)

(assuming that when alarge number x of unitsis produced, the extra cost for
one more unit isrelatively small). This says that the marginal cost is



approximately the difference in cost between producing the (a+1)* unit and
the a” unit — the extra cost of producing the (a+1)* unit. Similarly, for a

revenue function R, marginal revenue, R§a) approximates the additional
revenue received from selling the (a+1)” unit.

Example. Suppose that the cost (in dollars) of producing x widgetsis
C(x) =13+ x +1 x* and that all will be sold if the selling priceis

p(x) = 2(25- x). Themarginal cost of producing the 10" unit is
C(10 +h) - C(10)

C¢10) =lim -
_{13+(10 +h) +1(10 +h)*} - {13+10 +4107}
=lim
h® 0 h
= li 1
lim(5+3h)
=5

To compare, the actual cost of producing the 10" unit is C(10) - C(9) = 4.8.
The revenue function (selling price times number sold) is

R(X)=x" 2(25- x)=10x- ¢x°
The marginal revenue on the 10" unit is

RE10) = fim L0+ 1)- 10+ )7 - {1010) - (10}

h® 0 h

=1im(2 - 2h)

h® 0

=2
i.e. selling 10 unitsinstead of 9 produces approximatly $2 extrarevenue. m




3.3 Velocity and Other Rates of Change

Suppose we want to describe the motion of an object moving along a straight
path, say acar along aroad. If we pick some reference point on the path and a
positive direction along the path, the position p of the object relative to this
point at any time t isits “signed distance” from the reference point and
dependson t,i.e. p=s(t) for some function s. (“ Signed distance” means that
the sign of s(t) is positive whenever the object is on the positive side of the
reference point and negative when it is on the negative side of this point.)

o ol >

s(t) >

Suppose first that the graph of the

function s isastraight line, i.e. D o p=s()
suppose that it has constant slope. velocity = —-
This slope gives the change in
postion (Dp) for a corresponding
changeintime (Dt), i.e. it givesthe
velocity of the object — the reading
on the car’s speedometer.

Dp| change in
position

Dt
change in time

A linear position vstime curve thus represents an object moving at a constant
velocity given by the slope of thisline. Notethat if the velocity is negative (if
Dp is negative while Dt is positive), the object is moving in the negative
direction aong its path.



What if the position vstime curveisnot a
straight line? Now the object ismoving
with variable velocity - the car's p=s(t)
speedometer reading is changing. Of
course, over very small intervals of time, it

doesn't change much - for avery small /
change in time, the velocity is nearly

constant. To estimate this approximately
constant velocity near any instant t = a, we
can look at the position vs. time curve for a
very small timeinterval near t = a. Suppose
we zoom in on the point (a,s(a)) until the (a+ h,s(a+h))
curve appears straight, i.e. until its slope
appears constant. Then we can calculate the
object's approximate velocity near timet = a (a s(a))
aswe did with the linear distance vstime

curve: the approximate velocity near t = a is
the slope of this near-line:

(a]s(a))

roximate _ _Dp_s(a+h)- s@)
ap\Il/)elocity = slope = Dt h :

Intuitively, then, the speedometer reading at instant t = a should be the limit
of this expression as the length Dt = h of the time interval approachesO, i.e. it
should be s€a), the slope of the position vs. time curve at instant t = a.

Defintion. If an object moves along a straight path so that its
position relative to some reference point on that path is p=s(t) at



timet, then itsinstantaneous velocity at time t = a is defined to be
s€a), if thisderivative exists.

Example. A car moves along a straight road so that its distance from its
starting point at time t hours past noon is 10t + 60tkm. Then if s(t) isthe
position of the car at time't relative to its starting point, s(t) = 10t* + 60t, and
the car’svelocity at 1 p.m. is
sq1)=im 3L M) - SO
h® 0 h
_ .. {10(2+hy? +60(1+ h)} - 70
B hl®0 h

= |im(10h +80)

h® 0

=380

The units are units of s(t) divided by unitsof t, i.e. thevelocity at 1 p.m. is
80 km/hr. Notethat if the car travelsfor atotal of 3 hours, its average
velocity for thetripis

total distance _ S(3)- 40) _270 _ 0\ i m
total time 3-0

Example. Aftert seconds, a stone dropped off a 100 m cliff has fallen
4.9t°m. Wefind how fast it is going when as hits the ground.

The postion of the stone relative to the top of the cliff is s(t) = - 4.9t (the
negative sign is there because we normally measure upward distances as
positive). We need s§a), where aisthetimeit hits the ground. This happens
when s(t) = - 100, i.e. when - 4.9t* =- 100, or t =40 sec. Thus



10 10
10\ — i X7 TH) - S(T)
sk _Ihl®n(]) h
-4.9(9+h)? - (-4.9(%)?)
h® 0 h
:”m-4.9{%) + 2 h+h? - %’}
h® 0 h

=-4.91in{Z° +h)

h® 0

=-4.9(%0) = - 140.

The stoneistravelling at 140 m/sec. when it hits the ground. (The minus sign
indicates that it is moving downward at thetime.) =

Example. Suppose that aweight at the end of a spring oscillates with simple
harmonic motion, i.e suppose that its distance above its starting point at time
t isgiven by
_ Aqn@@P1o

s(t) = Asing b g
where A and P are positive constants. Since the sine function oscillates
between —1 and +1, s(t) oscillates between - A and +A, so A isthe amplitude
of the oscillation. The sine function undergoes one complete oscillation

whenever its argument increases by 2p, i.e. whenever t/ P increasesby 1, or
t increasesby P, so P isthe period of the oscillation.

We find the velocity of the weight asit completesitsfirst oscillation, i.e.
when t = P.
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Soif A=3cm and P=5sec, for example, the velocity is % cm/sec, or
approximately 3.77 cm/sec. |

Velocity isarate of change; the rate of change of position with respect to
time. Many other rates of change can be modeled by derivatives; in fact, a
rate of change is aderivative' s “fundamental nature’” — all derivatives are
rates of change in some sense.



Consider any quantity q that varies with time — g could be the volume of
water in an draining tank, the population of a country, the temperature of a
cooling object, the value of an investment or one of many other possible
quantities. Sinceit dependsontime t, g = Q(t) for some function Q.

a rate of change = ﬁ
If the graph of Q isastraight line, then Dt
its slope is constant, and represents the _
rate of change of the quantity g (Dq) change in q=Q(t)

guantity

with respect to the corresponding change
intime t (Dt).

change in time

If the graph of Q isnot astraight line, the rate

g of change of g with respect to timeis not
T N\ constant. However, for small enough changes
Y Q(a)) in time, this rate of change doesn't vary much
q=q(t) andthegraphof q=Q(t) doesn't differ much

from astraight line. If we zoom in on the

t curve g = Q(t) near any instant of time't = a,
the rate of change of g with respect to time
near t = a can be approximated by the slope

Dt approximate rate of change
(a Q@)  sope
o -X
Dt
@+ hQlax _ Qa+h)- Q@)
h




of this near-linear zoomed curve;

The closer we zoom, the smaller the time interval becomes and the closer this
slope approaches the slope of the curve at (a,s(a)). It thus makes sense to
define the rate of change at the instant t = a by the slope of the curve at this
point, i.e. by the derivativeof q=Q(t) att = a.

If q=Q(t) represents the value of some quantity that varies with

time t, then at time t = a, the instantaneous rate of change of g
with respect to time is defined to be Q®a), if this derivative exists.

L1 If h=H(t) represents the height (in meters) of water in atank at time t
minutes past 4 p.m., what does H 3) represent (in general terms, in words
other than “instantaneous rate of change”)? What are the unitsfor H3)? If
H&3) = - 5, what is the significance of the negative sign?

Example. A counter top is contaminated with a large and growing population
of microbes. The number (in millions) of microbes per square centimeter of
the counter top t minutes after it is sprayed with disinfectant is given by

9+2t-t¥?, 0E£t£9.

(So there are 9 million per square cm. to start and none at t =9.) Isthe
microbe population increasing or decreasing one minute later? four minutes
|ater?

The number of millions of microbes per square cm. t minutes after spraying is
N(t)=9+2t- t¥.



The rate of change of this number after 1 minuteis N¢1) and after 4 minutes
IS N¢ 4; we need to know their signs. Since N isarelatively complicated
function, to avoid having to do two potentially complicated limits, let's
calculate N¢a) for ageneral value of a, and then substitute a=1 and a = 4.

N(a+h)- N(a)

N((a):lrrgg .
{9+2(a+h)- (a+h)*’}- {9+2(a)- a®']
=lim
h® 0 h
—|im‘|'2- (a+h)3/2 i a3/2l',J
_h®0’:‘ h
_2- lim(a+h)3/2 _ 3.3/2
B h® 0 h
_ . (a+ h)3/2 _ a3/2 ) (a+ h)3/2 +a3/2 . .
=2- |h|®rr3 . (a+h)3/2 ApCTE. rationalize
PSR Cull) Mk
h®0h{(a+ h)3/2 +a3}
. .. (a®+3a’h+3ah*+h’)- a®
=2-lim T RREYE. expand the cube
wo  hi(a+h)* +a*'7
—o. lim 3a®+3ah+h?
- h®o(a + h)3/2 + 32
2
=2- 3a3/2
2a
=2- 3a"

Since N¢1) =4 > 0, the microbe population per square cm. isincreasing at
time t =1 min., at arate of half amillion per minute. But N¢4)=-1<0, so
after 4 minutes, the microbe population per square cm. is decreasing, at arate
of 1 million per minute.



Plot the function N with your grapher and use the graph to estimate the turn-
around point (i.e. the time at which the population reachesits maximum and
starts to decrease) and estimate the maximum population. =

[1 Suppose that the height of the water surface of ariver adistance d km.
from its mouth is given in metersby H(d). Interpret H5). What are the
appropriate unitsfor H5)? Isit positive or negative?



3.4 Derivatives as Functions

Suppose we want to calculate f §a) for multiple values of a — say we want to
look at the velocity of a moving object at several instances of time, for
example. Rather than doing several limit calculations at different values of a
with the same function, it makes sense to do one calculation at a general
unspecified value, say x, and then substitute values of a as necessary. The
resulting limit depends on x, i.e. itisafunction of x.

Definition For afunction f of avariable x, the function f ¢given
by

{00 = lim TN F()

h® 0 h

iscalled the derivative of f. The process of finding aderivativeis
called differentiation.

Example. If f(x)=+/x, thenthe derivative of f is
f(x+h)- (x)

fgx) =1im -
i JX+h- /X
T heo h

X +h- /X, A/ X+h+4/x

—Ll@gr(l) h JX+h ++/X
—lim (x+h)- x

160 h(~/x +h ++/x)

®o«/ +h+X

1



So if we want to find the tangent line at some point on y =+/x, say at (4, 2,
we use the derivative function to find a numerical slope f €4) = %,, and then
thelineis

<
I
N

1
EN

X
N

which simplifiesto x - 4y =-4.

In general, the domain of f ¢ consistsof all x inthedomain of f for which the
derivetive isdefined. Inthiscase, thedomain of f iS[0,¥), but since the
derivativeis not defined at x =0, thedomain of f¢is (0,¥). =

[] Show that the derivative of the function f(x)= x> +x is f x) = 2x +1.
The curve y = f(x) crossesthe x-axisat x =-1and x =0. Show that the
tangent lines to the curve at these points are perpendicular.

At each point along the curve y = f(x), the derivative f ¢x) gives the slope of
the curve. More accurately, for any x, the value of f §x) (the y-coordinate of
the curve y = f €x) ) givesthe slope of the y = f(x).

Example. Thederivativeof f(x)=4x>- xis



{30+ - (i} - {3°- o)

fG(x):Llér(m) -
_Iim%(X3+3X2h+3Xh2 +h3)- X-h- %X3+X
T h®o h

=lim(x* +xh+$h”- 1)

=x>-1

= (x+1(x- D

The graph of f ¢isthusaparabolacrossing the x-axisat x =- 1 andx =+1.
Here are the graphs of function and its derivative plotted together on the same
axes.

\

f increasing f decreasing
f§x) >0 f§x) <0

At any value of x, thevalue of y = f x) = x” - 1 (the y-coordinate of the
green curve) gives the slope of the original curve y = f(x) =4 x> - x (thered
curve). Notethat the graph of f isincreasing wherever f §x) >0, i.e.



wherever the graph of f ¢is above the x-axis, and decreasing wherever
f €x) <0, i.e. wherever the graph of f ¢isbelow the x-axis. ®

The conclusions of this example are truein general. A third possibility,
f §x) © 0, occurs wherever the rate of change of f(x) iszero, i.e. where f(x)
doesn't change.

Information from the sign of the derivative For any
function f,

 onintervalswhere f §x) >0, f isincreasing
e onintervalswhere f §x) <0, f isdecreasing
* on intervalswhere f ¢x) ° 0O, f isconstant.

(A rigorous proof of this statement requires the Mean Vaue Theorem.)

Example Wefind intervals on which the function f (x) = x- 4+/x is
increasing, decreasing or constant. First, we need the derivative.



{x+h- 4Jx+h} - {x- 4J/x}

fq(x)—ngg N
1, 4x- 4x+hi]
I|m|1
h® 0} h f\;
_1+”m4{\/7(-\lx+h}, X +x+h
7T heo h JX+A/X+h
: X- (x+h)
=1+4lim
%0 (/X + VX )
_1+4Ihé>rcr\/_+\/m
:]___
Jx

The function isincreasing wherever f §x) >0, i.e. where 1> % or x>4. Itis
decreasing wherever f¢x) <0, i.e. where 1<% or x<4. Here'sthe graph of

y=f(x) =x- 4J/x.

The interpretation of a derivative as afunction is an extension of the
interpretation a derivative at a point: it is afunction giving the rate of change



of the original function for any arbitrary values of its independent variable.
Thus, for example, if the position of an object on aline relative to some
reference point is p = s(t) a timet, then s§t) isafunction giving the object's
velocity at any arbitrary timet.

Example Let'sanalyse the direction of motion of an object that moves along
a straight path so that its position relative to some reference point on that path
IS

s(t) =t*- 4t+7

meters at timet sec. First, we'll find the derivative of s.

S((t):”@rgs(uhg- s(t)
_ Li®ng{(t+h)2 - 4(t+h); 7-{t?- at+7)
=lim(2t+h- 4)
=2t- 4.

Then the object istravelling in the negative x-direction when s¢t) <0, i.e.
when t <2, and in the positive x-direction when s§t) >0, i.e. whent >2. The
turn-around point occurs when t =2, when the velocity is O - the object is not
stopped then, but just changing direction. At this point, its position is s(2) = 3.

(=3



[1 A point moves upward along the y-axis so that its y-cordinate at timet sec.
is y(t) =t** units. Whenisitsvelocity 3 units/sec. ?



3.5 Higher Derivatives, Concavity and
Acceleration

Since the derivative of afunction is another function, we can repeat the
differentiation processto find the second derivative, the third derivative, and
higher order derivatives. These repeated derivatives are denoted by f @, f df,
etc., or by f™ for the n derivative of f. Thefunction f itself is sometimes

taken to be the O derivative: f @ o f

Example. We find the second derivative of f(x)=~/x. Thefirst derivative
(found in the previous section) is f ¢x) = 2_J7< Then

6 =i fc[(x+hg- f )
_jimdl 1 1§
"0 hi 24X +h " 2JxP

:”mihﬁ(- Jx+h, X +Jx+hi
h®02hl X +hA/x &+\/x+h%

17 X - (X +h) f
h®02h1m\/7<(\/_+\/mm
_ 1
S R R (IX )
o
= 2T (2 I)

.
~ AxJX o




(1 Show that the second derivative of f(x)=% is f &x) = 5.

[1 A genera quadratic function has the form q(x) = ax” + bx + ¢ for constants
a, band cwith at 0. Show that q€x) = 2ax+ b and q®x)=2a. What is
the third derivative of g7 the fourth derivative? the fifth?

Concavity The second derivative of f isthefirst derivative of f ¢, and so
givesthe rate of change of the dope of the curve y = f(x). (The function
itself may be increasing or decreasing; it's the rate of change of the slope that
matters here.)

Suppose f @x) > 0 on someinterval.

Then on thisinterval, the slope of f&x) >0
y = f(x) isincreasing as x increases,

concave
I.e. the curveis getting steeper - if upward

negative, the slope is getting less

negative, or if positive, it isgetting

more positive. Thetangent line at

any point of the curve has constant bends upward
slope, so to get steeper, the curve from its

itself must bend upward from its tangent lines
tangent line at any point of the

interval- it is concave upward.



Conversely, if f@x) <0 onan

f®x) <0 _ |
interval, the slope of y=f(x) is

concave ) ] _

downward decreasing as x increases, i.e. the

curve is getting less steep as x
increases- if positive, the slopeis
getting less positive, or if negative, it
bends IS getting more negative. To get less
downward steep, the curve itself must bend
from its downward from its tangent line at any

tangent lines . oo
point - It IS concave downward.

Example Let'sfind wherethe function f(x)=%x°- x*+4 isconcave
upward or concave downward. We need the second derivtive of f. Thefirst
derivativeis

{F(x+0°- (x+h)? +4} - {4X°- x* +4}

F&) =lim n
a0 o) (22t (10 x4
h® 0 h
:Li&%x2+%xh+%h2- 2X - h) expand the cube
:%xz- o and the square

and the second derivative is then



{3(x+h)?- 2(x+h)} - {$x%- 2x}

fdi(x)-”@ng -
_”m%x2+xh+%h2-2x-2h-%x2+2x
" heo h
= +1h
im(x+3 h- 2)
=X- 2

Then fd@x) <0for x<2and fdx)>0
for x>2 so f isconcave downward for
X < 2 and concave upward for x> 2.
The graph of f looks like this:

More about notation If y= f(x), then we can write its derivatives as
ye=fqx), y&=f&x), ..., y"" = f™(x). Another equally important
notation is the Leibniz notation:

dy_d dy _ d° d”y d .
f =y(q, :—f X d, — = — f(x

The Leibniz notation has the disadvantage that it doesn't directly supply a
place to put avalue of x where it may be evaluated. Thisisusually indicated
with avertical line:

2

d d
fd(a):d—y ,fm(a):d—g’ , efc.

X=a X=a



Example You showed earlier that for f(x) =%, f®x)=-5. In other

notation, this can be written as

1\¢ d?y d? (1| 2
oS3

x|~ aé dx? X
2
Alsod—g =2 m
dx“| =3 27
[] For y=f(x) =x°, explain why dy 111‘(3).
dxix=3 dx

Acceleration We've seen that the derivative of the position function of an
object isthe velocity function of that object. The derivative of the velocitiy
function gives the rate of change of velocity, i.e. the acceleration of the object.

Defintion. If an object moves along a straight path so that its
position relative to some reference point on that path is p=s(t) at

timet, then its instantaneous acceleration at any timet is defined
to be sd(t), if this derivative exists.

Example An object moves aong the x- axis so that its position relative to
the origin at any time't sec. is proportional to t* + 3. Itsinitial velocity is5
units/sec.; we find its acceleration function.

We have that the position function is x(t) = k(t4 + 3t) for some proportionality

constant k, so its velocity functionis



dx _ . X(t+h)- x(t)

l
eE

dt h
K (t+h)* +3(t+h)|- Kt* +3t]
=lim
h® 0 h
_[t*+4th+6t°h + 4th® +h* +3t +3h]- [t* + 3]
=limk
h® 0 h
— ; 2 2 2 3
- k|h|®rrc}(4t t6th +4th”+h +3) expand the fourth power
= k(4 +3 (binomial theorem)

Itinitial velocity is5, i.e. ((jj—)t(‘ =5,s0k(4" 0°+3 =5,i.ek=3. The
t=0

velocity function is now (3—): = —§(4t3 +3), and its derivative is the acceleration
function:
d2x _ . 3[at+h)’+3]- 5[4t +3
t2  heo h
4(t° +3t°h +3th? +h° +3] - [4t° + 3
h® 0 h

im(12t* + 12th+ 4h°)

|
h®0




3.6 Antiderivatives and Differential
Equations

Sometimes we need to go backward from a derivative to the original function.

Definition A function F isan antiderivative of another function

fifFe¢=f.

Example. You showed earlier on that the derivative of x* + x is 2x +1, S0
one antiderivative of 2x +1is x° + x. Now let's show that (x +%,)° isalso an
antiderivative of 2x +1.

- (x+h+ %) - (x+4)°

d 2 _
&(XH’» =lim -

h® 0 h

Since the derivative of (x +%)° is 2x +1, 2x +1 is another antiderivative of
(X+%)°. =

[1 Showthat x*+5, x> +67 and § x*- p areall antiderivatives of x*, and
find 3 others.



In general, afunction has many antiderivatives, but they are all related. To
see how, suppose we have two antiderivatives F, and F, of the same function

f, i.e. E¢x) =F$x) = f(x). Then F,$x)- F$x) =0, which saysthat
im2F- BOJ o R(x+h) - RX) _ g

h® 0 h h® 0 h

Combine the limits and rearrange the numerator :

i {ROcrh)- RO} - {R(9- KOO} _

h® 0 h

Thislimit isitself a derivative: the derivative of the function F, - F,. Since
the derivative isaways 0, the function F, - F, must be constant:

F(x)- F(x)=C for some constant C. Thissaysthat F,(x)= F(x)+C,
I.e.once we have one antiderivative of afunction, any other antiderivative of
that function may be found by adding a constant to the first one. If F isany
antiderivative of f, the general antiderivative of f iswritten as F(x)+ C for
an arbitrary and unspecified constant C.

[] In an earlier example, we found that x* + x and (x +%;)* were both
antiderivatives of 2x +1. Show that the second is the first plus a constant and
find the constant. What isthe general antiderivative of 2x +17?

There is no general method for calculating the antiderivative of afunction
(other than recognizing that function as a derivative), but there are many
techniques for doing so.



Differential equations A differential equation isan eguation involving a
function and its derivatives,

Some examples.

Sytt+ y@+ 3y¢- 2y =sinx Ax f(x)fix) =1
%f: 5s+¢ Xy @ xy¢+y = 3x°

A solution of adifferential equation is any function which satisfiesiit.

Example. Let'sshow that y = f(x) =3x” +x isasolution of the |ast
eguation above. Y ou showed earlier that the first two derivatives of a general
quadratic function g(x) = ax” + bx + ¢ are q& x) = 2ax+ b and qd x) = 2a. For
our particular function, a=3, b=1 and ¢ =0, sowe havethat f x)=6x+1
and f dx) =6. Then

XY@ xy¢+y = x*(6) - x(Bx +1) +(3x° +x) =3%°

so y=3x* +x isasolution of x*y@- xy¢+y=3x". ®

[] Show that f(x)=+/x isasolution of the differential equation

4x f(x)f ax) =1.

Differential equations generally have many solutions. The differential equation
y¢=2x+1, for example, statesthat y isan antiderivative of 2x +1. \We saw
earlier that all such y'shavetheform y = x* +x +C for some constant C, i.e.
y =X +x+C isthe general solution of y¢=2x+1. In general, the solution of



afirst order differential equation (one with only afirst order derivative of the
function) contains one arbitrary constant, and in most cases, any solution of a
first order equation containing an arbitrary constant is the general solution.

The general solution to a differential \/ '
eguations represents a families of

curves, with different curves of the
family given by different values of the
constant(s). The curvesin the diagram
al have equations of the form
y=x"+x+C for some constant C,
and so are all graphs of solutions of
ye=2x+1.

A particular solution of adifferential

eguation is one with specific values of the constant(s) assigned, so for
example, y = x> +x +3 isthe particular solution of the differential equation
y¢=2x+1 which passes through the point (- 1,3) - the blue curvein the
diagram.

Example. Let's show that y:1+§ IS the general solution of the first order

differential equation xy¢+y- 1= 0, and then find the particular solution that
passes through (1,3). Wefirst need yd.



lim. A b Asi
= — T 9+—"- + —
ye Ik!(rgr(}h{? X+ ho ? x2)

:|iml}i_£‘u
hwoh|X+h x%
= jim A X (X+h)y
wohi (x+h)x b
- Alim— =
h®o (X +h)x
_-A
X2
Then
1= y& Ao, el AG
Xyery 1_Xéxzﬂ+§+xﬂ 1
=_ 841421
X X
=0

so we have the general solution. For the particular solution, put (x,y) =(1,3)
in the general solution: 3=1+ —é, fronwhichA=2. The particular solution

through (1,3) isthus y =1+ ;2( |

[1 Show that y = Bx® +1 isthe general solution of the first order differential
equation xy¢- 3y+3=0. Show that no particular solution passes through the
origin, but all pass through (0,1). Find the particular solution which passees
through (- 1,0), and plot it and severa other curves of this family on the same
axes. Arethere any other points which have no particular solution curve
passing thorough them?



Example A basic physical principle states that, on earth, any object falls
with a constant acceleration of approximately 9.8 m/sec®. Let'sfind aformula
for its vertical position.

» We'll need some antiderivatives. Remember that you found the derivatives
of aquadratic polynomial earlier:

(at® +bt +c)¢=2at +b and (2at+b)¢=2a;
the corresponding antiderivatives are all we'll need.

» The derivative of the velocity v(t) isthe constant acceleration -9.8 (the sign
IS negative because we normally measure positive distances upward). Use the
second formulawith a=-4.9 and b=0:

{2(- 4.9 ¢=2(- 4.9) =- 9.8 = v(t).

It follows that v(t) = 2(- 4.9)t +C for some constant C. To identify C, set
t=0: v(0)=C,i.e, Cistheinitial velocity of the falling object (for example,
the object could be a projectile fired upward with some positive initial
velocity). We have so far

V(1) =- 9.8t +v(0.

* Now let's do the same thing again, since velocity is the derivative of
position s(t). Usethefirst differentation formulawith a=-4.9, b =v(0) and
c=0:

(-4.9t° + v(0)t)¢= 2(- 4.9)t +v(0) = si(t).

It follows that s(t) = - 4.9t + v(0)t + D for some constant D. To identify D,
set t =0agan: s(0) =D, i.e. D istheinitial position of the object (for
example, if the object falls out awindow 10 m above ground, D=10). Our
final formulafor the vertical position of ageneral falling object is



s(t) = - 4.9t° +v(0)t +s(0). ™

Falling body Attimet sec., the position of afalling body,
measured in meters, is given by

s(t) = - 4.9t + v(0)t +5s(0)
where s(0) isitsinitial position and v(0) isitsinitial velocity.




3.7 What can go Wrong; Differentiability

Thus far, we have been differentiating functions without worrying about
whether the process awaysworks. Since aderivativeisatype of limit, in
some circumstances, it may not exist.

Definition Thefunction f is differentiable at x =a whenever

f Q) exists.

If afunction is not differentiable at a point, many different things can go
wrong. Let’slook at some of them.

First of al, the curve may simply never straighten out as we zoom in on the
point in question.

Example. Let'slook at the absolute value function at the point (0,0. Since

1 x forx3 0
f(x)—IxI—%_X forx<0
the graph of f consists of parts of two straight
lines: y=-x for x<0and y=x for x3 0.

These lines meet at (0,0 and are perpendicular
there, and no amount of zooming will ever show
otherwise — the graph has aintrinsic “kink” at
(0,0.



Let’s see how this plays out algebraically. To calculate the derivative of
f(x)=|x a x =0, we need to find the limit
Il

__lo+h-10 _,.
[im———— =lim—.
h® 0 h h®o h

We deal with the absolute value by taking separate left- and right- hand limits.

For h<0, [hi=-h, solim™=lim(-1) =-1.

h®o h h®0

For h>0, [hi=h, so lim!D = im(+D) =1

h®eo h h®o

Since we have different left- and right- hand limits, it follows that the limit we
need doesn’'t exist, so f isnot differentiableatx =0. ™

[] Useyour grapher to plot the function
f(x)=]x*- x-2|.

For which x does it appear that f isnot differentiable? Verify your guess by
finding left- and right- hand limits of the difference quotient at each point.

\/For most values of the constant m, the function

j4x- x° forx£0
f(x)=1i

AL forx>0
hasakink at (0,0. Useyour grapher to plot this function for some value of
m, say m =1, and then experiment with different values of m to find the one
which appears to remove the kink. Once you think you have the correct value

for m, verify your guess by showing that f isdiffferentiable for this m.



In general, it’s not possible to

determine for sureif acurve hasa
kink at some point merely by zooming
In on that point with agrapher. No

matter how close in to the point you Z
zoom to, it’s always possible that, at a
higher magnification, what appears to

be akink will “round off”,
«

or what appears to be a kink-free curve
will develop some minuscule kink
hitherto too small to be seen.——

Another way a f function can fail to be differentiable at apoint a isif its
graph “becomes vertical” there:

Example. Consider thefunction f(x)=x">. When wetry to calculate its
derivativeat x =0, we get
1/3 1/3
GRS e i

I
h® 0 h h® 0 h

so f isnot differentiableat x =0. If we plot
its graph, we can see what is happening
geometrically: the slope of the graph of f
becomesinfiniteat x =0: Ixi®ng|f¢{x)| =+¥. H



[ Useyour grapher to plot the graph of f(x) = x*> cosx, and zoom in on the
point (0,0. What happens to the slope of the curve near this point? Try to
calculate the derivative at x =0 and see what happens.

In order to be differentiable at a point, a function must first be continuous
there.

Theorem If afunctionisdifferentiable at a point, then it must be
continuous at that point.

Proof. Assumethat thefunction f isdifferentiable at x =a: then we want to
show that it iscontinuous at x =a, i.e. that Ii®m f(x) = f(a). If weset
X® a

h=x- a, thisisthe same as showing that

Ihi(g]gf(a+h): f(a).

Let'sexpress f(a+h) asacombination of terms:

f(a+h)-
h

f(a+h):% f(a)%m f(a).

(Check this by simplifying the right hand side.)

Each of the three parts of the right hand side has alimit:

[l Since f isdifferentiableat x =a, Ilj& f(a+h3]- @ _ f&a).

] limh=0.

h® 0



[] Since f(a) isaconstant, Irj(érg f(a) = f(a).

It follows that

lim f(a+h) = f§a)” 0+ f(a) = f(a),

h® 0

which is what we wanted to prove. &

Example Weve seen that the function

b ado L
F(x) = lesméxg forx1 0
tf O forx=0

iIscontinuousat x =0. Let'sseeif itisdifferentiable there. Wetry to
calculate the derivative:

i £ +h)- £(0)

h® 0 h

Since } increases forever as h® 0, sine of it oscillates forever between+1
and -1: the limit doesn't exist. So f isnot differentiableat x =0. =

[] Usethefact that the function f of this exampleis continouosat x =0 to
show that the functions



_'\[x'”sin"\fil('j forx1 0
On(X) =1 exo
t 0 forx=0

are differentiable at x =0 for any n>1, and find their derivatives there.



