
3.1  Slopes of Curves; Derivatives

The slope of a line is a measure of its

“steepness”: for any two points on the

line, it is the ratio of the “rise”

(difference in the y − coordinates) to

the “run” (difference in the

x −coordinates), i.e. slope = ∆y / ∆x .

Steep lines have large slopes (large ∆y  relative

to ∆x ), flatter lines have smaller slopes.

Decreasing lines (which go “downhill” as x

increases towards the right) have negative slopes

(∆x  and ∆y  with opposite signs). The slope of a

line doesn’t depend on the pair of points on the

line used to calculate it; all pairs of points on the

same line will give the same slope.

For curves that aren't lines, the idea of a single overall slope is not very useful.

Intuitively, the steepness of a typical curve is different at different places on

the curve, so an appropriate definition of slope for the curve should somehow

reflect this variable steepness.
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Let’s look at how we could define the slope of

a particular curve, say y = x2 , near a typical

point on the curve, say (1,1) .

Use your grapher to plot the curve and the

point, and investigate by zooming in closely on

the point.  Notice what happens as you zoom:

as you get closer to the point, the visible part of

the curve gets progressively straighter, and

eventually becomes indistinguishable from a

straight line.  Looked at “up close”, the part of

the curve y = x2  near (1,1)  is approximately a

straight line, so it makes sense to think of the

slope of y = x2  near (1,1)  as the slope of this

approximate line.  Read off from your zoomed

graph the coordinates of another point on the

curve and use it with the point (1,1)  to calculate

a slope.  You should get a number very close to

2 – in fact, the closer in you zoom, the nearer this calculated slope should be

to 2.

✔ Find the approximate slope of y = x2  near ( 2 , 4 ) by zooming.

Now let’s do this same process algebraically, for the graph of a general

function y = f (x)  at a general point (a, f (a)) on it.  Suppose we zoom in on

(a, f (a)) until we’re satisfied that the visible part of the curve is nearly a line.

(1,1)

(1,1)

( ? , ? )



We can calculate the slope of this approximate

line from the given point (a, f (a)) and a

nearby point on the curve, say with x = a + h

for some small value h  and y = f (a + h):

∆y
∆x

= f (a + h)− f (a)
(a + h) − a

= f (a + h)− f (a)
h

.

Now suppose we zoom in closer and closer to

(a, f (a)).The visible part of the curve gets

closer and closer to a straight line as we do so.

At each step, to calculate the slope of this

"improved" line, we need to take a new nearby

point (a +h, f (a +h)) even closer to (a, f (a))

than before, i.e. we have to take h smaller and

smaller.  In effect, we are performing a

limiting process here: we are looking at the

value as h → 0 of our above expression for the slope near (a, f (a)).  It thus

makes sense to define the slope of the curve at (a, f (a)) to be the limit of this

expression.

Definition.  The slope of a curve y = f (x)  at the point (a, f (a))

on it is defined to be the number

lim
h→0

f (a +h) − f (a)
h

if this limit exists.
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Example.  Let’s use this limit to check our earlier experimental result that

the slope of the curve y = x2  at the point (1,1)  is 2.  Here a = 1 and f (x) = x2 ,

so we have

lim
h→0

f (a +h) − f (a)
h

= lim
h→0

(1+ h)2 −12

h

= lim
h→0

2h + h2

h
= lim

h→0
(2 + h)

= 2

as expected. ■

Example.  We find the slope of the curve y = x  at the point ( 4 , 2 ).  Here

a = 4  and f (x) = x , so the slope is

lim
h→0

f (a +h) − f (a)

h
= lim

h→0

4+ h − 4

h

= lim
h→0

4+ h − 2
h

× 4 + h +2
4 + h +2

= lim
h→0

(4 + h) − 4
h( 4 + h + 2)

= lim
h→0

1
4+ h + 2

= 1
4 +2

= 1
4

Check this answer by zooming in on the graph of y = x  near ( 4 , 2 ). ■



✔  Find the slope of the curve y = 1
x  at (2, 1

2) and check your answer by

zooming in on the graph.

The special limit used to find slopes of curves occurs in many other contexts,

and so has a name and a notation.

Definition.  For any function y = f (x) , the number

′ f (a) = lim
h→0

f (a + h) − f (a)
h

if it exists, is called the derivative of the function f  at the value

x = a .

Example. Let’s use the definition to calculate the derivative of

f (x) = (x +3)2 at x = 0 .



′ f (0) = lim
h→o

f (0 +h) − f (0)
h

= lim
h→o

(0 + h +3)2 − (0 + 3)2

h

= lim
h→o

(h2 +6h +9) − (9)
h

= lim
h→o

(h +6)

= 6

✔  Use the definition to find the derivative of f (x) = x(x −2) at x = 2 .

✔  Find the derivative of sin x  at x = 0  and the derivative of cos x at x = π .

✔ Identify "by inspection" a function f and a number a such that

′ f (a) = lim
h→0

(2 + h)e(2 +h ) − 2e2

h
.

Problem.  Calculate the derivative of f (x) = x
x + 1

 at x = 2  from the

definition.

■



′ f (2) = lim
h→0

f (2+ h)− f (2)

h

= lim
h→0

2+h
(2+h)+1 − 2

2+1

h

= lim
h→0

1
h

2 + h
3 +h

− 2
3

   
   

= lim
h→0

1
h

3(2 + h) − (3+ h)2
(3+ h)(3)

 
 
 

 
 
 

= lim
h→0

1
h

h
3(3+ h)

 
 
 

 
 
 

= lim
h→0

1
3(3+h)

= 1
3(3) = 1

9

✔  Use the definition to calculate the derivative of f (x) = 1
x+1  at x = 3.

✔   To calculate derivatives of more complicated functions, you can often use

your CAS to do the necessary work.  Use your CAS to find the derivative of

f (x) = x2 −5
x2 +1

at x = 4  from the definition.

■



3.2  Tangent Lines and Linear
Approximations

Intuitively, a line is tangent to a curve at

some point on it if the line “touches” the

curve at that point.  We can think of the

tangent line as the limiting position of a

line through the point and another nearby

point on the curve as the second point

approaches the first.

Let’s use this idea to find the slope of the tangent line and then its equation.

Suppose we are given a point (a, f (a)) on the curve y = f (x) .  If (x, f (x)) is a

nearby point on the curve, then the slope of the line joining the two points is

∆y
∆x

= f (x) − f (a)
x −a

.

The slope of the tangent line at (a, f (a)) is the limit of this expression as

(x, f (x)) approaches (a, f (a)) along the curve, i.e. as x  approaches a :

lim
x→a

f (x) − f (a)
x − a

.

If we set h = x − a, then the statement “ x → a” is equivalent to “h → 0”, so

we can write the limit as

lim
h→0

f (a +h) − f (a)
h

,

 

(a, f (a))

(x , f (x))



i.e. we have ′ f (a).

The slope of the line tangent to the graph of y = f (x)  at the point

(a, f (a)) on it is ′ f (a).

Example.  To find the equation of the line tangent to y = x3 at the point (2,8)

on it, we set f (x) = x3and calculate the necessary slope ′ f (2):

′ f (2) = lim
h→0

f (2 + h)− f (2)
h

= lim
h→0

(2 + h)3 − 23

h

= lim
h→0

(8+12h + 6h2 + h3) −8
h

= lim
h→0

(12+ 6h + h2 )

=12

To find the tangent line, equate this slope to the slope from the points (2,8)
and (x,y) and solve for y:

y −8
x −2

=12,

y − 8 = 12(x − 2)

=12x − 24,

y =12x −16. ■



Example.  The normal line to a curve at a point on it is the line perpendicular
to the curve at that point, i.e. perpendicular to its tangent line at that point.

(Remember that two lines are perpendicular if their slopes are negative

reciprocals of each other.)

To find the normal line to the curve y =1 x at (1,1) , we first find the slope of

the tangent line at (1,1) .  For f (x) = 1 x ,

′ f (4) = lim
h→0

f (1 + h) − f (1)
h

= lim
h→0

1 1+ h −1 1

h

= lim
h→0

1
h

1
1+ h

−1 
  

 
  

= lim
h→0

1
h

1− 1+ h
1+ h

 
 
 

 
 
 

= lim
h→0

1

h

1− 1+ h

1+ h
×1+ 1+ h

1+ 1+ h
 
 
 

 
 
 

= lim
h→0

1
h

1− (1− h)
1+ h (1+ 1+h )

 
 
 

 
 
 

= lim
h→0

1
1+ h (1+ 1+ h )

= 1
2

This is the slope of the tangent line through

(1,1) , so the slope of the normal line through

(1,1)  is −2 .  The equation of the normal line

is then

y −1
x −1

= −2 (1,1)

y = x

y = −2x + 3



which simplifies to y = −2x +3.  ■

✔  Find equations for the tangent line and normal line to the parabola

y = x2 +4x   at the origin.

✔  Find the derivative of f (x) = ex  at x = 0 .  (Hint: how was the number e

defined?)

At any point of on the graph of a function, the tangent line has the derivative

of the function at that point as slope, i.e. the tangent line has the same slope as

the curve at that point.  This means that when we zoom in on the point, the

line that the curve “straightens out” into is in fact this same tangent line.

Since the curve then gets closer and closer to its tangent line the closer we

zoom in on the point of tangency, we can use the tangent line to approximate

the curve near that point.

The line tangent to the curve

y = f (x)  at (a, f (a)) has slope

′ f (a), and so has equation

y − f (a)
x − a

= ′ f (a),

 or equivalently,

y = f (a) + ′ f (a)(x −a).

Near x = a , the  y-coordinate for the curve is approximately the y-coordinate

for the line.

 

(a, f (a))

(x , f (x))

(x , f (a) + ′ f (a)( x − a))



Definition.  The  linear approximation  near x = a  for the
function y = f (x)  is

f (x) ≈ f (a)+ ′ f (a)(x − a) .

Example.  We find the linear approximation for the parabola y = x2 −5x + 3

for values of x  near 1.  For a = 1 and f (x) = x2 −5x +3 the approximation is

f (x) ≈ f (1)+ ′ f (1)( x −1).  We have f (1) = −1 and we need to find ′ f (1) :

′ f (1) = lim
h→0

(1 +h)2 − 5(1 + h)+ 3{ } − −1{ }
h

= lim
h→0

h −3( ) = −3

Then near x =1, f (x) ≈ −1+ (−3)( x −1), i.e., x2 − 5x +3 ≈ −3x +2 .  ■

✔  Use a linear approximation near x = 0  to show that sin x ≈ x  for small

values of x.  About how small must x  be to ensure accuracy to 2 decimal

places?  (Experiment by tabulating some values of x  vs. sin x .)

Example.  We use a linear approximation to estimate 83.  The function in

this case is f (x) = x , and the nearest value to 83 of an easy-to-find square is

a = 81.  The approximation is f (83) ≈ f (81)+ ′ f (81)(3− 1), so we need



′ f (81) = lim
h→0

81+ h − 81
h

= lim
h→0

81+ h − 9
h

× 81+ h + 9
81+ h + 9

= lim
h→0

(81+ h)− 81
h 81+ h + 9

= lim
h→0

1
81+ h + 9

= 1
18

Then 83 ≈ 81 + 1
18(83−81) = 9 1

9 ≈ 9.1111 (correct to 4 decimal places).

The actual value of 83 is 9.1104 (to 4 decimal places).  ■

✔  Use a linear approximation to estimate 1
2.003 .

====================================================

In economics, derivatives of quantities such as cost, revenue, etc. which are

functions of the number of units produced are called marginal quantities.  For

example, if C(x) is the cost of producing x  units of some commodity, then

′ C (a) is the marginal cost of producing a  units.  For values of x  close to a ,

linear approximation of C(x) gives

C(x) ≈ C(a)+ ′ C (a)(x − a).

Since only whole numbers of units can be produced, x  and a  must be positive

integers.  If x = a +1, we have C(a +1) ≈ C(a) + ′ C (a)×1, i.e.

′ C (a) ≈ C(a+1)− C(a)

(assuming that when a large number x  of units is produced, the extra cost for

one more unit is relatively small). This says that the marginal cost is



approximately the difference in cost between producing the (a +1)st  unit and

the a th  unit – the extra cost of producing the (a +1)st  unit. Similarly, for a

revenue function R, marginal revenue, ′ R (a)  approximates the additional

revenue received from selling the (a +1)st  unit.

Example.  Suppose that the cost (in dollars) of producing x  widgets is

C(x) = 13+ x + 1
5 x2  and that all will be sold if the selling price is

p(x) = 2
5 (25 − x).  The marginal cost of producing the 10 th unit is

′ C (10) = lim
h→0

C(10 + h) −C(10)
h

= lim
h→0

13+ (10 + h) + 1
5 (10 +h)2{ } − 13+10 + 1

5 102{ }
h

= lim
h→0

(5 + 1
5 h)

= 5

To compare, the actual cost of producing the 10 th unit is C(10) −C(9) = 4.8.

The revenue function (selling price times number sold) is

R(x) = x × 2
5 (25 − x) = 10x − 2

5 x2

The marginal revenue on the 10 th unit is

′ R (10) = lim
h→0

10(10 + h)− 2
5 (10+ h)2{ }− 10(10) − 2

5 (10)2{ }
h

= lim
h→0

(2 − 2
5 h)

= 2

i.e. selling 10 units instead of 9 produces approximatly $2 extra revenue.  ■



3.3  Velocity and Other Rates of Change

Suppose we want to describe the motion of an object moving along a straight

path, say a car along a road.  If we pick some reference point on the path and a

positive direction along the path, the position p of the object relative to this

point at any time t is its “signed distance” from the reference point and

depends on t, i.e. p = s(t) for some function s. (“Signed distance” means that

the sign of s(t)  is positive whenever the object is on the positive side of the

reference point and negative when it is on the negative side of this point.)

Suppose first that the graph of the

function s  is a straight line, i.e.

suppose that it has constant slope.

This slope gives the change in

postion (∆p ) for a corresponding

change in time (∆t ), i.e. it gives the

velocity of the object – the reading

on the car’s speedometer.

A linear position vs time curve thus represents an object moving at a constant

velocity given by the slope of this line.  Note that if the velocity is negative (if

∆p  is negative while ∆t  is positive), the object is moving in the negative

direction along its path.

change in
position

change in time

∆p

∆t

t

p p = s(t)

velocity =
∆p
∆t

s(t)
+_



What if the position vs time curve is not a

straight line?  Now the object is moving

with variable velocity - the car's

speedometer reading is changing.  Of

course, over very small intervals of time, it

doesn't change much - for a very  small

change in time, the velocity is nearly

constant. To estimate this approximately

constant velocity near any instant t = a, we

can look at the position vs. time curve for a

very small time interval near t = a.  Suppose

we zoom in on the point (a, s(a)) until the

curve appears straight, i.e. until its slope

appears constant.  Then we can calculate the

object's approximate velocity near time t = a

as we did with the linear distance vs time

curve: the approximate velocity near t = a is

the slope of this near-line:

approximate
velocity = slope = ∆p

∆t
= s(a + h) − s(a)

h
.

Intuitively, then, the speedometer reading at instant t = a should be the limit

of this expression as the length ∆t = h of the time interval approaches 0, i.e. it

should be ′ s (a), the slope of the position vs. time curve at instant t = a.

Defintion.  If an object moves along a straight path so that its

position relative to some reference point on that path is p = s(t) at

p = s(t)

(a, s(a))

t

p

 

∆p

∆t

(a, s(a))

(a + h, s(a + h))



time t, then its instantaneous velocity at time t = a is defined to be

′ s (a), if this derivative exists.

Example.  A car moves along a straight road so that its distance from its
starting point at time t hours past noon is 10t 2 + 60tkm.  Then if s(t)  is the

position of the car at time t relative to its starting point, s(t) = 10t2 + 60t , and

the car’s velocity at 1 p.m. is

′ s (1)= lim
h→0

s(1+ h)− s(1)
h

= lim
h→0

10(1+ h)2 +60(1+ h){ }− 70

h
= lim

h→0
(10h +80)

= 80

The units are units of s(t)  divided by units of t, i.e. the velocity at 1 p.m. is

80 km/hr.  Note that if the car travels for a total of 3 hours, its average
velocity for the trip is

total distance
total time

= s(3)− s(0)
3− 0

= 270
3

= 90  km/hr.  ■

Example.  After t  seconds, a stone dropped off a 100 m cliff has fallen

4.9t 2m.  We find how fast it is going when as hits the ground.

The postion of the stone relative to the top of the cliff is s(t) = −4.9t 2  (the

negative sign is there because we normally measure upward distances as

positive).  We need ′ s (a), where a is the time it hits the ground.  This happens

when s(t) = −100 , i.e. when −4.9t 2 = −100 , or t = 10
7  sec.  Thus



′ s (10
7 ) = lim

h→0

s(10
7 +h) − s(10

7 )
h

= lim
h→0

−4.9(10
7 + h)2 − −4.9(10

7 )2( )
h

= lim
h→0

−4.9 100
49 + 200

7 h +h2 − 100
49{ }

h

= −4.9lim
h→0

200
7 + h( )

= −4.9 200
7( ) = −140.

The stone is travelling at 140 m/sec. when it hits the ground.  (The minus sign

indicates that it is moving downward at the time.)  ■

Example.  Suppose that a weight at the end of a spring oscillates with simple
harmonic motion, i.e suppose that its distance above its starting point at time

t is given by

s(t) = Asin
2πt
P

 
 

 
 ,

where A and P are positive constants.  Since the sine function oscillates

between –1 and +1, s(t)  oscillates between −A and +A, so A is the amplitude
of the oscillation.  The sine function undergoes one complete oscillation

whenever its argument increases by 2π, i.e. whenever t / P increases by 1, or

t increases by P, so P is the period of the oscillation.

We find the velocity of the weight as it completes its first oscillation, i.e.

when t = P.



′ s (P) = lim
h→0

s(P+ h)− s(P)
h

= lim
h→0

1
h

A sin
2π(P + h)

P
 
 

 
 − A sin

2π(P)
P

 
 

 
 

 
 
 

 
 
 

= lim
h→0

A
h

sin 2π + 2πh
P

 
 

 
 − sin 2π( ) 

 
 

 
 
 

= A lim
h→0

sin
2πh

P

 
 

 
 

h

= A lim
h→0

sin
2πh

P
 
 

 
 

2πh

P

 
 

 
 

2π

P

= A ×1× 2π
P

= 2πA
P

So if A = 3 cm  and P = 5 sec, for example, the velocity is 6π
5  cm/sec, or

approximately 3.77 cm/sec.  ■

Velocity is a rate of change; the rate of change of position with respect to

time.  Many other rates of change can be modeled by derivatives; in fact, a

rate of change is a derivative’s “fundamental nature” –  all derivatives are

rates of change in some sense.

put it in the form

lim
→0

sin

since sine is periodic

and since sin 2 =0



Consider any quantity q  that varies with time – q  could be the volume of

water in an draining tank, the population of a country, the temperature of a

cooling object, the value of an investment or one of many other possible

quantities.  Since it depends on time t, q = Q(t) for some function Q.

If the graph of Q is a straight line, then

its slope is constant, and represents the

rate of change of the quantity q  (∆q )

with respect to the corresponding change

in time t (∆t ).

If the graph of Q is not a straight line, the rate

of change of q with respect to time is not

constant.  However, for small enough changes

in time, this rate of change doesn't vary much

and the graph of q = Q(t) doesn't differ much

from a straight line.  If we zoom in on the

curve q = Q(t) near any instant of time t = a,

the rate of change of q with respect to time

near t = a can be approximated by the slope

q = Q(t)

t

q

(a, Q(a))

∆q

∆t
(a, Q(a))

(a + h,Q(a + h))

change in time

change in
quantity ∆t

∆q

rate of change = ∆t
∆qq

t

q = Q(t)

approximate rate of change

= slope

= ∆q
∆t

= Q(a + h) − Q(a)
h



of this near-linear zoomed curve:

The closer we zoom, the smaller the time interval becomes and the closer this

slope approaches the slope of the curve at (a, s(a)).  It thus makes sense to

define the rate of change at the instant t = a by the slope of the curve at this

point, i.e. by the derivative of  q = Q(t) at t = a.

If q = Q(t) represents the value of some quantity that varies with

time t, then at time t = a, the instantaneous rate of change of q

with respect to time is defined to be ′ Q (a) , if this derivative exists.

✔  If  h = H(t ) represents the height (in meters) of water in a tank at time t

minutes past 4 p.m., what does ′ H (3) represent (in general terms, in words

other than “instantaneous rate of change”)?  What are the units for ′ H (3)?  If

′ H (3) = −5, what is the significance of the negative sign?

Example. A counter top is contaminated with a large and growing population

of microbes.  The number (in millions) of microbes per square centimeter of

the counter top t minutes after it is sprayed with disinfectant is given by

9 +2t − t 3/2 ,    0 ≤ t ≤ 9 .

(So there are  9 million per square cm. to start and none at t = 9 .)  Is the

microbe population increasing or decreasing one minute later?  four minutes

later?

The number of millions of microbes per square cm. t minutes after spraying is

                                         N(t )= 9 + 2t − t 3/2 .



The rate of change of this number after 1 minute is ′ N (1) and after 4 minutes

is ′ N ( 4 ); we need to know their signs.  Since N is a relatively complicated

function, to avoid having to do two potentially complicated limits, let's

calculate ′ N (a) for a general value of a, and then substitute a = 1 and a = 4 .

′ N (a) = lim
h→0

N(a + h) − N(a)
h

= lim
h→0

9+ 2(a + h) − (a + h)3/2{ } − 9 +2(a)−a3 / 2{ }
h

= lim
h→0

2 − (a + h)3/2 −a3/2

h
 
 
 

 
 
 

= 2 − lim
h→0

(a + h)3/2 − a3/2

h

= 2 − lim
h→0

(a + h)3/2 − a3/2

h
× (a + h)3/2 + a3/2

(a + h)3/2 + a3 / 2

= 2 − lim
h→0

(a +h)3 − a3

h (a + h)3/2 + a3{ }
= 2 − lim

h→0

(a3 +3a2h +3ah2 + h3)− a3

h (a + h)3/2 + a3 / 2{ }
= 2 − lim

h→0

3a2 + 3ah + h2

(a + h)3/2 + a3/2

= 2 − 3a2

2a3 / 2

= 2 − 3
2 a1/2

Since ′ N (1) = 1
2 > 0, the microbe population per square cm. is increasing at

time t =1 min., at a rate of half a million per minute.  But ′ N ( 4 )= −1 < 0 , so

after 4 minutes, the microbe  population per square cm. is decreasing, at a rate

of 1 million per minute.

  rationalize

   expand the cube



Plot the function N  with your grapher and use the graph to estimate the turn-

around point (i.e. the time at which the population  reaches its maximum and

starts to decrease) and estimate the maximum population.  ■

✔  Suppose that the height of the water surface of a river a distance d  km.

from its mouth is given in meters by H(d) .  Interpret ′ H (5). What are the

appropriate units for ′ H (5)?  Is it positive or negative?



3.4  Derivatives as Functions
Suppose we want to calculate ′ f (a) for multiple values of a  – say we want to

look at the velocity of a moving object at several instances of time, for

example. Rather than doing several limit calculations at different values of a
with the same function, it makes sense to do one calculation at a general

unspecified value, say x , and then substitute values of a  as necessary.  The

resulting limit depends on x , i.e. it is a function of x .

Definition For a function f  of a variable x , the function ′ f  given

by

′ f (x) = lim
h→0

f (x + h)− f (x)
h

is called the derivative of f .  The process of finding a derivative is

called differentiation.

Example.  If f (x) = x , then the derivative of f  is

′ f (x) = lim
h→0

f (x + h)− f (x)
h

= lim
h→0

x + h − x
h

= lim
h→0

x + h − x
h

× x + h + x
x + h + x

= lim
h→0

(x + h)− x
h( x +h + x )

= lim
h→0

1

x + h + x

= 1
2 x



So if we want to find the tangent line at some point on y = x , say at ( 4 , 2 ),

we use the derivative function to find a numerical slope ′ f (4) = 1
4 , and then

the line is

y − 2
x −4

= 1
4

which simplifies to x −4y = −4 .

In general, the domain of ′ f  consists of all x  in the domain of f  for which the

derivative is defined.  In this case, the domain of f  is [0,∞) , but since the

derivative is not defined at x = 0 , the domain of ′ f  is (0,∞).  ■

✔  Show that the derivative of the function f (x) = x2 + x  is ′ f (x) = 2x +1.

The curve y = f (x)  crosses the x-axis at x = −1 and x = 0 .  Show that the

tangent lines to the curve at these points are perpendicular.

At each point along the curve y = f (x) , the derivative ′ f (x)  gives the slope of

the curve.  More accurately, for any x, the value of ′ f (x)  (the y-coordinate of

the curve y = ′ f (x) ) gives the slope of the y = f (x) .

Example.  The derivative of f (x) = 1
3 x3 − x  is



′ f (x) = lim
h→0

1
3 (x + h)3 − (x + h){ } − 1

3 x3 − x{ }
h

= lim
h→0

1
3 (x3 +3x2h + 3xh2 +h3 )− x −h − 1

3 x 3 + x
h

= lim
h→0

x2 + xh + 1
3 h2 −1( )

= x2 −1

= (x +1)( x −1)

The graph of ′ f  is thus a parabola crossing the x-axis at x = −1 and x = +1.

Here are the graphs of function and its derivative plotted together on the same

axes.

 At any value of x, the value of y = ′ f (x) = x 2 −1 (the y-coordinate of the

green curve) gives the slope of the original curve y = f (x) = 1
3 x 3 − x  (the red

curve).  Note that the graph of f  is increasing wherever ′ f (x) > 0 , i.e.

 f  increasing
′ f (x) > 0

 f  decreasing
′ f (x) < 0

 f  increasing
′ f (x) > 0

y = ′ f (x)y = f (x)



wherever the graph of ′ f  is above the x-axis, and decreasing wherever

′ f (x) < 0 , i.e. wherever the graph of ′ f  is below the x-axis. ■

The conclusions of this example are true in general.  A third possibility,

′ f (x) ≡ 0, occurs wherever the rate of change of f (x) is zero, i.e. where f (x)

doesn't change.

Information from the sign of the derivative  For any

function f,

• on intervals where ′ f (x) > 0 , f  is increasing

• on intervals where ′ f (x) < 0 ,  f  is decreasing

• on intervals where ′ f (x) ≡ 0,  f  is constant.

(A rigorous proof of this statement requires the Mean Value Theorem.)

Example  We find intervals on which the function f (x) = x − 4 x  is

increasing, decreasing or constant.  First, we need the derivative.



′ f (x) = lim
h→0

x +h − 4 x + h{ } − x − 4 x{ }
h

= lim
h→0

1+ 4 x −4 x + h
h

 
 
 

 
 
 

=1+ lim
h→0

4 x − x + h{ }
h

× x + x + h
x + x + h

=1+ 4 l im
h→0

x − (x +h)
h x + x +h( )

=1+ 4 l im
h→0

−1
x + x + h

=1− 2

x

The function is increasing wherever ′ f (x) > 0 , i.e. where 1> 2
x  or x > 4.  It is

decreasing wherever ′ f (x) < 0 , i.e. where 1< 2
x   or x < 4.  Here's the graph of

y = f (x) = x − 4 x .

The interpretation of a derivative as a function is an extension of the

interpretation a derivative at a point: it is a function giving the rate of change

■



of the original function for any arbitrary values of its independent variable.

Thus, for example, if the position of an object on a line relative to some

reference point is p = s(t) at time t, then ′ s (t)  is a function giving the object's

velocity at any arbitrary time t.

Example  Let's analyse the direction of motion of an object that moves along
a straight path so that its position relative to some reference point on that path

is

s(t) = t2 − 4t + 7

meters at time t sec.  First, we'll find the derivative of s.

′ s (t) = lim
h→0

s(t + h)− s(t)
h

= lim
h→0

(t + h)2 − 4(t + h)+ 7{ } − t2 −4t + 7{ }
h

= lim
h→0

(2t + h − 4)

= 2t − 4.

Then the object is travelling in the negative x-direction when ′ s (t) < 0 , i.e.

when t < 2 , and in the positive x-direction when ′ s (t) > 0 , i.e. when t > 2 .  The

turn-around point occurs when t = 2 , when the velocity is 0 - the object is not

stopped then, but just changing direction. At this point, its position is s(2) = 3.

s(2)=3 ■



✔  A point moves upward along the y-axis so that its y-cordinate at time t sec.

is y(t) = t 3/2  units.  When is its velocity 3 units/sec. ?



3.5  Higher Derivatives, Concavity and
Acceleration

Since the derivative of a function is another function, we can repeat the

differentiation process to find the second derivative, the third derivative, and

higher order derivatives.  These repeated derivatives are denoted by ′ ′ f , ′ ′ ′ f ,

etc., or by f (n)  for the nth derivative of f .  The function f  itself is sometimes

taken to be the 0th  derivative: f (0) ≡ f .

Example. We find the second derivative of f (x) = x .  The first derivative

(found in the previous section) is ′ f (x) = 1
2 x .  Then

′ ′ f (x) = lim
h→0

′ f (x + h)− ′ f (x)

h

= lim
h→0

1
h

1
2 x +h

− 1
2 x

 
  

 
  

= lim
h→0

1
2h

x − x +h
x +h x

× x + x + h
x + x + h

 
 
 

 
 
 

= lim
h→0

1
2h

x − (x + h)
x + h x x + x + h( )

 
 
 

  
 
 
 

  

= lim
h→0

−1
2 x + h x x + x +h( )

= −1
2 x x 2 x( )

= −1
4x x ■



✔  Show that the second derivative of f (x) = 1
x  is ′ ′ f (x) = 2

x3 .

✔  A general quadratic function has the form q(x) = ax2 + bx + c for constants

a, b and c with a ≠ 0.  Show that ′ q (x) = 2ax+ b  and  ′ ′ q (x) = 2a .  What is

the third derivative of q? the fourth derivative?  the fifth?

Concavity  The second derivative of f  is the first derivative of ′ f , and so

gives the rate of change of the slope of the curve y = f (x) .  (The function

itself may be increasing or decreasing; it’s the rate of change of the slope that

matters here.)

Suppose ′ ′ f (x) > 0 on some interval.

Then on this interval, the slope of

y = f (x)  is increasing as x increases,

i.e. the curve is getting steeper - if

negative, the slope is getting less

negative, or if positive, it is getting

more positive.   The tangent line at

any point of the curve has constant

slope, so to get steeper, the curve

itself must bend upward from its

tangent line at any point of the

interval- it is concave upward.

concave
upward

bends upward
from its
tangent lines

′ ′ f (x) > 0



Conversely, if ′ ′ f (x) < 0 on an

interval, the slope of y = f (x)  is

decreasing as x increases, i.e. the

curve is getting less steep as x

increases- if positive, the slope is

getting less positive, or if negative, it

is getting more negative. To get less

steep, the curve itself must bend

downward from its tangent line at any

point - it is concave downward.

Example  Let's find where the function f (x) = 1
6 x3 − x 2 + 4  is concave

upward or concave downward.  We need the second derivtive of f.  The first

derivative is

′ f (x) = lim
h→0

1
6 (x + h)3 − (x + h)2 + 4{ }− 1

6 x3 − x2 + 4{ }
h

= lim
h→0

1
6 x3 +3x2h + 3xh2 +h3( ) − x2 + 2xh + h2( )+ 4{ }− 1

6 x 3 − x 2 + 4{ }
h

= lim
h→0

1
2 x 2 + 1

2 xh + 1
6 h2 −2x − h( )

= 1
2 x 2 − 2x

and the second derivative is then

concave
downward

bends
downward
from its
tangent lines

′ ′ f (x) < 0

expand the cube

and the square



′ ′ f (x) = lim
h→0

1
2 (x +h)2 − 2(x + h){ } − 1

2 x 2 − 2x{ }
h

= lim
h→0

1
2 x 2 + xh + 1

2 h2 − 2x −2h − 1
2 x2 +2x

h

= lim
h→0

x + 1
2 h −2( )

= x − 2.

Then ′ ′ f (x) < 0 for x < 2 and ′ ′ f (x) > 0

for x > 2 so  f  is concave downward for

x < 2 and concave upward for x > 2.

The graph of f  looks like this:

More about notation   If y = f (x) , then we can write its derivatives as

′ y = ′ f (x) , ′ ′ y = ′ ′ f (x), . . . , y(n) = f (n )(x).   Another equally important

notation is the Leibniz notation:

dy
dx

= d
dx

f (x) = ′ y ,    
d 2y
dx 2 = d2

dx 2 f (x) = ′ ′ y ,  . . . , 
d ny
dx n = d n

dx n f (x) = y(n ).

The Leibniz notation has the disadvantage that it doesn't directly supply a

place to put a value of x where it may be evaluated.  This is usually indicated

with a vertical line:

′ f (a) = dy
dx x=a

,    ′ ′ f (a) = d2 y
dx2

x=a
, etc.

■



Example    You showed earlier that for f (x) = 1
x , ′ ′ f (x) = 2

x3 .  In other

notation, this can be written as

′ ′ y = 1
x( )′′ = d2 y

dx2 = d 2

dx2

1
x( ) =

2
x 3 .

Also 
d 2y
dx 2

x=3
= 2

27
. ■

✔  For y = f (x) = x 2 , explain why  
dy
dx x=3

≠ d
dx

f (3) .

Acceleration  We've seen that the derivative of the position function of an

object is the velocity function of that object.  The derivative of the velocitiy

function gives the rate of change of velocity, i.e. the acceleration of the object.

Defintion.  If an object moves along a straight path so that its
position relative to some reference point on that path is p = s(t) at

time t, then its instantaneous acceleration at any time t is defined

to be ′ ′ s (t) , if this derivative exists.

Example  An object moves along the x- axis so that its position relative to

the origin at any time t sec. is proportional to t 4 + 3t .  Its initial velocity is 5

units/sec.; we find its acceleration function.

We have that the position function is x(t) = k t4 + 3t( )  for some proportionality

constant k, so its velocity function is



dx
dt

= lim
h→0

x(t + h) − x(t)
h

= lim
h→0

k (t + h)4 +3(t + h)[ ]− k t4 + 3t[ ]
h

= lim
h→0

k
t4 + 4t3h+ 6t 2h2 + 4th3 +h4 +3t +3h[ ]− t4 + 3t[ ]

h

= k lim
h→0

4t2 + 6t2h + 4th 2 + h3 +3( )
= k(4 t3 + 3)

It initial velocity is 5, i.e. 
dx
dt t=0

= 5, so k(4 ×03 + 3) = 5, i.e.k = 5
3 .  The

velocity function is now 
dx
dt

= 5
3 4t 3 +3( ), and its derivative is the acceleration

function:

d 2 x
dt2 = lim

h→0

5
3 4(t + h)3 +3[ ] − 5

3 4t3 +3[ ]
h

= lim
h→0

5
3

4(t3 +3t2h + 3th2 + h3 +3[ ] − 4t3 + 3[ ]
h

= 5
3 lim

h→0
12t2 + 12th+ 4h2( )

= 5
3 (12t2 )

= 20t 2 ■

expand the fourth power

(binomial theorem)



3.6  Antiderivatives and Differential
Equations

Sometimes we need to go backward from a derivative to the original function.

Definition  A function F is an antiderivative of another function

f  if ′ F = f .

Example.  You showed earlier on that the derivative of x2 + x  is 2x +1, so
one antiderivative of 2x +1 is x2 + x .  Now let's show that (x + 1

2)
2  is also an

antiderivative of 2x +1.

d
dx

(x + 1
2)

2 = lim
h→0

(x + h+ 1
2)2 − (x+ 1

2)2

h

= lim
h→0

x2 +h2 + 1
4 +2xh +2( 1

2)x + 2(1
2)h{ }− x2 + 2x(1

2) + 1
4{ }

h
= lim

h→0
h + 2x +1{ }

= 2x +1

Since the derivative of (x + 1
2)

2  is 2x +1, 2x +1 is another antiderivative of

(x + 1
2)

2 .  ■

✔  Show that 1
3 x3 + 5, 1

3 x3 + 67 and 1
3 x3 − π  are all antiderivatives of x2 , and

find 3 others.



In general, a function has many antiderivatives, but they are all related.  To

see how, suppose we have two antiderivatives F1  and F2  of the same function

f,  i.e. F1
′(x) = F2

′(x) = f (x).  Then F2
′(x) − F1

′(x) = 0, which says that

lim
h→0

F2 (x + h)− F2(x)
h

− lim
h→0

F1(x +h) − F1(x)
h

= 0.

Combine the limits and rearrange the numerator :

lim
h→0

F2(x +h)− F1(x + h){ } − F2(x) − F1(x){ }
h

= 0.

This limit is itself a derivative: the derivative of the function F2 − F1.  Since

the derivative is always 0, the function F2 − F1 must be constant:

F2 (x)− F1(x) = C  for some constant C.  This says that F2 (x)= F1(x) +C ,

i.e.once we have one antiderivative of a function, any other antiderivative of

that function may be found by adding a constant to the first one.  If F is any

antiderivative of  f, the general antiderivative of  f  is written as F(x)+ C for

an arbitrary and unspecified constant C.

✔  In  an earlier example, we found that x2 + x  and (x + 1
2)

2  were both

antiderivatives of 2x +1.  Show that the second is the first plus a constant and

find the constant.  What is the general antiderivative of 2x +1?

There is no general method for calculating the antiderivative of a function

(other than recognizing that function as a derivative), but there are many

techniques for doing so.



Differential equations  A differential equation is an equation involving a

function and its derivatives.

Some examples:

5 ′ ′ ′ y + ′ ′ y + 3 ′ y − 2y = sin x            4x f (x) ′ ′ f (x) = 1

ds
dt

= 5s + et                                   x2 ′ ′ y − x ′ y + y = 3x2

A solution of a differential equation is any function which satisfies it.

Example.  Let's show that y = f (x) = 3x2 + x  is a solution of the last

equation above.  You showed earlier that the first two derivatives of a general

quadratic function q(x) = ax2 + bx + c are ′ q (x) = 2ax+ b  and ′ ′ q (x) = 2a . For

our particular function, a = 3, b =1 and c = 0, so we have that ′ f (x) = 6x +1

and ′ ′ f (x) = 6.  Then

x2 ′ ′ y − x ′ y + y = x2 (6) − x(6x +1) + (3x 2 + x) = 3x2

so y = 3x2 + x  is a solution of x2 ′ ′ y − x ′ y + y = 3x2 . ■

✔  Show that f (x) = x  is a solution of the differential equation

4x f (x) ′ ′ f (x) = 1.

Differential equations generally have many solutions.  The differential equation

′ y = 2x +1,  for example, states that  y  is an antiderivative of 2x +1.  We saw

earlier that all such y's have the form y = x2 + x +C   for some constant C,  i.e.

y = x2 + x +C  is the general solution of ′ y = 2x +1. In general, the solution of



a first order differential equation (one with only a first order derivative of the

function) contains one arbitrary constant, and in most cases, any solution of a

first order equation containing an arbitrary constant is the general solution.

The general solution to a differential

equations represents a families of

curves, with different curves of the

family given by different values of the

constant(s).  The curves in the diagram

all have equations of the form

y = x2 + x +C   for some constant C,

and so are all graphs of solutions of

′ y = 2x +1.

A particular solution of a differential

equation is one with specific values of the constant(s) assigned, so for

example, y = x2 + x +3 is the  particular solution of the differential equation

′ y = 2x +1  which passes through the point (−1,3) - the blue curve in the

diagram.

Example.  Let's show that y =1+ A
x

  is the general solution of the first order

differential equation x ′ y + y −1= 0 , and then find the particular solution that

passes through (1,3).  We first need ′ y .



′ y = lim
h→0

1
h

1+ A
x + h

 
 

 
 − 1+ A

x
 
 

 
 

 
 
 

 
 
 

= lim
h→0

1
h

A
x + h

− A
x

   
   

= lim
h→0

A
h

x − (x +h)
(x +h)x

 
 
 

 
 
 

= A lim
h→0

−1
(x +h)x

= −A
x 2

Then

x ′ y + y −1= x
−A
x 2

 
 

 
 + 1+ A

x
 
 

 
 −1

= − A
x

+1+ A
x

−1

= 0

so we have the general solution.  For the particular solution, put (x,y) = (1,3)

in the general solution:  3 =1+ A
1 , fron which A = 2 .  The particular solution

through (1,3) is thus y =1+ 2
x

.  ■

✔   Show that y = Bx3 +1 is the general solution of the first order differential

equation x ′ y −3y +3 = 0 .  Show that no particular solution passes through the

origin, but all pass through (0,1).  Find the particular solution which passees

through (−1,0) , and plot it and several other curves of this family on the same

axes.  Are there any other points which have no particular solution curve

passing thorough them?



Example  A basic physical principle states that, on earth, any object falls
with a constant acceleration of approximately 9.8 m/sec2.  Let's find a formula

for its vertical position.

•  We'll need some antiderivatives.  Remember that you found the derivatives

of a quadratic polynomial earlier:

(at2 + bt +c ′ ) = 2at +b    and  (2at + b ′ ) = 2a;

the corresponding antiderivatives are all we'll need.

•  The derivative of the velocity v(t)  is the constant acceleration -9.8 (the sign

is negative because we normally measure positive distances upward). Use the

second formula with a = −4.9 and b = 0:

2(−4.9)t{ }′ = 2(−4.9) = −9.8 = ′ v (t).

It follows that v(t) = 2(−4.9)t +C  for some constant C.  To identify C, set

t = 0:  v(0) = C , i.e., C is the initial velocity of the falling object (for example,

the object could be a projectile fired upward with some positive initial

velocity).  We have so far

v(t) = −9.8t + v( 0 ).

•  Now let's do the same thing again, since velocity is the derivative of

position s(t) .  Use the first differentation formula with a = −4.9, b = v(0)  and

c = 0:

(−4.9t2 + v(0)t ′ ) = 2(−4.9)t +v(0) = ′ s (t) .

It follows that s(t) = −4.9t 2 + v(0)t + D for some constant D.  To identify D,

set t = 0 again: s(0) = D , i.e. D is the initial position of the object (for

example, if the object falls out a window 10 m above ground, D=10).  Our

final formula for the vertical position of a general falling object is



s(t) = −4.9t 2 + v(0)t + s(0).  ■

Falling body  At time t sec., the position of a falling body,
measured in meters, is given by

s(t) = −4.9t 2 + v(0)t + s(0)
where s(0) is its initial position and v(0)  is its initial velocity.



3.7 What can go Wrong; Differentiability

Thus far, we have been differentiating functions without worrying about

whether the process always works.  Since a derivative is a type of limit, in

some circumstances, it may not exist.

Definition  The function f  is  differentiable at x = a  whenever

′ f (a) exists.

If a function is not differentiable at a point, many different things can go

wrong.  Let’s look at some of them.

First of all, the curve may simply never straighten out as we zoom in on the

point in question.

Example.   Let's look at the absolute value function at the point ( 0 , 0 ).  Since

f (x) = x =
x for x ≥ 0

−x for x < 0
 
 
 

the graph of f  consists of parts of two straight

lines: y = −x  for x < 0 and y = x  for x ≥ 0.

These lines meet at ( 0 , 0 ) and are perpendicular

there, and no amount of zooming will ever show

otherwise – the graph has a intrinsic “kink” at

( 0 , 0 ).



Let’s see how this plays out algebraically.  To calculate the derivative of

f (x) = x   at x = 0 , we need to find the limit

lim
h→0

0 +h − 0
h

= lim
h→0

h
h

.

We deal with the absolute value by taking separate left- and right- hand limits.

• For h < 0 ,  | h |= −h ,  so lim
h→0

h
h

= lim
h→0

(−1) = −1.

• For h > 0 ,  | h |= h,  so lim
h→0

h
h

= lim
h→0

(+1) = 1.

 Since we have different left- and right- hand limits, it follows that the limit we

need doesn’t exist, so f  is not differentiable at x = 0 . ■

 ✔  Use your grapher to plot the function

f (x) = x2 − x −2 .

For which x does it appear that  f  is not differentiable?  Verify your guess by

finding left- and right- hand limits of the difference quotient at each point.

For most values of the constant m, the function

f (x) =
4x − x2 for x ≤ 0

mx for x > 0

 
 
 

has a kink at ( 0 , 0 ).  Use your grapher to plot this function for some value of

m, say m = 1, and then experiment with different values of m to find the one

which appears to remove the kink.  Once you think you have the correct value

for m, verify your guess by showing that f  is diffferentiable for this m.



In general, it’s not possible to

determine for sure if a curve has a

kink at some point merely by zooming

in on that point with a grapher.  No

matter how close in to the point you

zoom to, it’s always possible that, at a

higher magnification, what appears to

be a kink will “round off”,

or what appears to be a kink-free curve

will develop some minuscule kink

hitherto too small to be seen.

Another way a f  function can fail to be differentiable at a point a  is if its

graph “becomes vertical” there:  

Example.  Consider the function f (x) = x1/3.  When we try to calculate its

derivative at x = 0 , we get

lim
h→0

(0 + h)1 / 3− 01/3

h
= lim

h→0

1
h2/3 = +∞

so f  is not differentiable at x = 0 .  If we plot

its graph, we can see what is happening

geometrically:  the slope of the graph of f

becomes infinite at x = 0 : lim
x→0

′ f (x) = +∞.  ■



✔  Use your grapher to plot the graph of f (x) = x1/5 cos x , and zoom in on the

point ( 0 , 0 ).  What happens to the slope of the curve near this point?  Try to

calculate the derivative at x = 0  and see what happens.

In order to be differentiable at a point, a function must first be continuous

there.

Theorem  If a function is differentiable at a point, then it must be

continuous at that point.

Proof.  Assume that the function f  is differentiable at x = a ; then we want to

show that it is continuous at x = a , i.e. that lim
x→a

f (x) = f (a). If we set

h = x − a, this is the same as showing that

lim
h→0

f (a +h) = f (a) .

Let's express f (a +h) as a combination of terms:

f (a +h) = f (a + h)− f (a)
h

   
   

h + f (a).

(Check this by simplifying the right hand side.)

Each of the three parts of the right hand side has a limit:

✔ Since f  is differentiable at x = a ,   lim
h→0

f (a +h) − f (a)
h

= ′ f (a).

✔ lim
h→0

h = 0.



✔ Since f (a)  is a constant, lim
h→0

f (a) = f (a).

It follows that

lim
h→0

f (a +h) = ′ f (a) ×0 + f (a) = f (a),

which is what we wanted to prove. ■

Example  We've seen that the function

f (x) = x sin
1
x

 
 

 
 for x ≠ 0

0 for x = 0

 
 
 

  

is continuous at x = 0 .  Let's see if it is differentiable there.  We try to

calculate the derivative:

lim
h→0

f (0 +h) − f (0)

h

= lim
h→0

h sin 1
h − 0

h

= lim
h→0

sin 1
h

Since 1
h  increases forever as h → 0, sine of it oscillates forever between+1

and -1: the limit doesn't exist.  So  f  is not differentiable at x = 0 .  ■

✔ Use the fact that the function  f  of this example is continouos at x = 0  to

show that the functions



gn(x) = x n sin
1
x

 
 

 
 for x ≠ 0

0 for x = 0

 
 
 

  

 are differentiable at x = 0  for any n >1, and find their derivatives there.


